把细胞变“积木”,用微纳机器人组装人体器官

首页

2018-10-16

  由此,福田敏男首创了环境扫描电子显微镜(ESEM)下生物目标的机器人化操作系统与方法,从而结束了人类对单细胞等微纳尺度活体目标只能看得到却摸不到的状态。

基于该系统,福田教授相继提出了基于“纳米压痕”操作理论的活体细胞切割、参数提取和筛选的方法,这也成为世界上首个电子显微镜下生物细胞的机器人化操作理论体系,该研究受到世界各国的高度关注,在美国桑迪亚国家实验室向美国能源部呈送的纳米机器人研究年鉴中,不仅大篇幅报道了福田敏男的研究,还称其为“在纳米操作机器人中全世界最具代表性的研究者”。 福田敏男的研究也被各国媒体多次报道为“世界上最小的手术刀”。

在北理工,他用机器人“组装”人体微血管  实现检测挑选单细胞,仅仅是福田敏男的科学梦想的开端,而如何用挑选出来的优质细胞按照人体组织器官的构成规律进行三维拼装,从而以人为干预的形式构建人工组织与器官,最终应用于人体组织替换,这一造福人类的壮举才是他的终极追求,这条科研之路不仅漫长且充满挑战。   21世纪的第二个十年,带着对科学梦想的执着追求,福田敏男来到了中国,来到了北京理工大学。 面向世界一流大学建设,北理工长期关注世界科技前沿,对福田敏男的研究给予充分肯定,对他的梦想充满信心。

北理工用诚意和尊重,诚邀福田敏男到中国继续完成研究工作。

经过深思熟虑,北理工的办学特色和实力以及求贤若渴的诚意打动了他。

2013年6月,福田敏男作为全职教授入职北京理工大学。

  引进人才,是为了让人才能够在北理工的沃土上实现梦想、结出硕果。

为了帮助福田敏男迅速将科研工作开展起来,北理工整合办学资源,克服困难,在人员、场地、设备和经费等方面为福田敏男提供了有力保障。

在科研场地紧张的情况下,学校迅速为福田敏男配备了150平米的实验用房,并为实验室建设提供了500万元的启动经费。 之后,学校还为福田敏男团队的5名博士生赴海外世界一流大学交流学习一年提供支持。 种种有力举措,在短时间内,帮助福田敏男在北理工组建起一支高水平、具有国际化视野的科研团队,福田敏男“细胞组装、再造器官”的梦想在北理工落地生根。   就像使用乐高积木建房子,首先需要的是有一块块可以用来组装的“积木单元”。

因此,“组装”组织器官的第一步也需要将筛选获得的细胞封装成微型的“细胞积木”,俗称“细胞支架”。

对于单个细胞来说,支架就是包裹承载细胞的基础,可以调节局部生物化学、生物力学和质量输运微环境,以促进细胞活力和功能。

而在更大尺度上,要想“组装”出厘米规模的活性组织,甚至是完整的人体器官,必须通过对支架进行几何装配来实现,而支架不仅可以使得细胞效仿天然组织结构进行“组装”,还将“服务”细胞以最优的组织形式进行大量的增殖,是体外器官再造的关键基础。

  “细胞组装”的道理虽然不难理解,但是力的变化却让微观与宏观呈现出两个截然不同的世界。

重力在微观世界将失去效能,而各种微观力,比如范德华力、静电力和粘附力等却“登台亮相”,这就使得在宏观世界看起来非常简单的抓举、释放、排列等动作,在对“细胞支架”进行微纳尺度操作时,变得非常困难。 因此,如何在微观液体环境中实现对微小“细胞积木”的灵巧操作,是微纳尺度机器人操作与组织医学工程领域面临的共同挑战。